Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in I-Vector Speaker Recognition System

نویسندگان

  • Zhenchun Lei
  • Yanhong Wan
  • Jian Luo
  • Yingen Yang
چکیده

The i-vector model is widely used by the state-of-the-art speaker recognition system. We proposed a new Mahalanobis metric scoring learned from weighted pairwise constraints (WPCML), which use the different weights for the empirical error of the similar and dissimilar pairs. In the new i-vector space described by the metric, the distance between the same speaker’s i-vectors is small, while that of the different speakers’ is large. In forming the training set, we use the traditional way in random fashion and develop a new nearest distance based way. The results on the NIST 2008 telephone data shown that our model can get better performance than the classical cosine similarity scoring. When using the nearest distance based way to form the training set, our model is better than the state-of-the-art PLDA. And the results on the NIST 2014 i-vector challenge show that our model is also better than the PLDA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Acoustic Features for Emotional Speaker Recognition in I-vector Representation

Recently recognition of emotions became very important in the field of speech and/or speaker recognition. This paper is dedicated to experimental investigation of best acoustic features obtained for purpose of gender-dependent speaker recognition from emotional speech. Four feature sets LPC (Linear Prediction Coefficients), LPCC (Linear Prediction Cepstral Coefficients), MFCC (Melfrequency Ceps...

متن کامل

Bayesian distance metric learning on i-vector for speaker verification

This thesis explores the use of Bayesian distance metric learning (Bayes dml) for the task of speaker verification using the i-vector feature representation. We propose a framework that explores the distance constraints between i-vector pairs from the same speaker and different speakers. With an approximation of the distance metric as a weighted covariance matrix of the top eigenvectors from th...

متن کامل

Bayesian Distance Metric Learning

This thesis explores the use of Bayesian distance metric learning (Bayes-dml) for the task of speaker verification using the i-vector feature representation. We propose a framework that explores the distance constraints between i-vector pairs from the same speaker and different speakers. With an approximation of the distance metric as a weighted covariance matrix of the top eigenvectors from th...

متن کامل

Limited labels for unlimited data: active learning for speaker recognition

In this paper, we attempt to quantify the amount of labeled data necessary to build a state-of-the-art speaker recognition system. We begin by using i-vectors and the cosine similarity metric to represent an unlabeled set of utterances, then obtain labels from a noiseless oracle in the form of pairwise queries. Finally, we use the resulting speaker clusters to train a PLDA scoring function, whi...

متن کامل

Deep Speaker Embeddings for Short-Duration Speaker Verification

The performance of a state-of-the-art speaker verification system is severely degraded when it is presented with trial recordings of short duration. In this work we propose to use deep neural networks to learn short-duration speaker embeddings. We focus on the 5s-5s condition, wherein both sides of a verification trial are 5 seconds long. In our previous work we established that learning a non-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016